Tetrahedron Letters 51 (2010) 6250-6254

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Direct glycosylation with anomeric hydroxy sugars by activation with 3-fluorophthalic anhydride and trifluoromethanesulfonic anhydride

Ju Yuel Baek, Bo-Young Lee, Rita Pal, Won-Yong Lee, Kwan Soo Kim*

Center for Bioactive Molecular Hybrids and the Department of Chemistry, Yonsei University, Seoul 120-749, Republic of Korea

ARTICLE INFO

ABSTRACT

identified by an NMR study.

Article history: Received 11 August 2010 Revised 16 September 2010 Accepted 17 September 2010 Available online 29 September 2010

Keywords: Glycosylation 3-Fluorophthalic anhydride Glycosyl fluorophthalate

A great deal of effort has been devoted to the development of efficient and stereoselective glycosylation methodologies¹ over the past decades due to important roles of complex oligosaccharides in many fundamental life-sustaining processes.² Devising new glycosyl donors and developing new activating systems for existing donors have led to major advances in this field. Glycosyl trichloroacetimidates,³ thioglycosides,⁴ glycosyl sulfoxides,⁵ glycals,⁶ *n*-pentenyl glycosides,⁷ glycosyl fluorides,⁸ glycosyl phosphates,⁹ and glycosyl phosphites¹⁰ have been the most widely used glycosyl donors for the synthesis of complex oligosaccharides. We have also reported 2'-carboxybenzyl (CB) glycosides,¹¹ glycosyl pentenoates,¹² and glycosyl benzyl and aryl phthalates¹³ as new glycosyl donors. Glycosylation methodologies employing these aforementioned glycosyl donors consist of preparing the donor by conversion of an anomeric substituent into a latent leaving group in the first step. Activation of the isolated glycosyl donor by a promoter followed by formation of a glycosyl bond by the reaction between the activated donor and a nucleophilic glycosyl acceptor occurs in the second step. On the other hand, a direct glycosylation with anomeric hydroxy glycosyl donors, where the anomeric derivatization, activation, and glycosyl bond formation are combined in a one-pot procedure, would offer advantages over current stepwise glycosylation methods. Although there have been many reports on the direct glycosylation with C1-hydroxy glycosyl donors,¹⁴ they have not attracted much attention partly because most have not been utilized for the practical synthesis of oligosaccharides. Recently, Gin and co-workers developed a new method for the glycosylation with anomeric hydroxy sugars involving oxosulfonium intermediates¹⁵ and reported its application to the synthesis of complex oligosaccharides.¹⁶

© 2010 Elsevier Ltd. All rights reserved.

An efficient and direct one-pot glycosylation method using anomeric hydroxy sugars as glycosyl donors,

employing 3-fluorophthalic anhydride and triflic anhydride as activating agents, has been developed. The

present glycosylation utilizing 3-fluorophthalic anhydride resulted in few to no undesired self-condensed

esters than the glycosylation using phthalic anhydride. Intermediates in the present glycosylation were

We previously reported a new method for the one-pot direct glycosylation with anomeric hydroxy sugars employing phthalic anhydride and triflic anhydride (Tf_2O) as activators,¹⁷ and successfully applied the new method to the synthesis of complex oligosac-cahrides.^{17,18} Although the new glycosylation method employing phthalic anhydride (**1**) proved to be efficient and stereoselective, it did give undesired self-condensed ester **E** (R = H) in certain cases. This probably resulted from the coupling of glycosyl phthalate anion **B** (R = H) and oxocarbenium ion **D** as shown in Scheme 1.¹⁷

Scheme 1.

^{*} Corresponding author. Tel.: +82 2 2123 2640; fax: +82 2 365 7608. *E-mail address:* kwan@yonsei.ac.kr (K.S. Kim).

^{0040-4039/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.09.064

Figure 1. Glycosyl acceptors 3-9.

We envisioned that if 3-fluorophthalic anhydride (**2**) was used as the activator instead of phthalic anhydride (**1**), the nucleophilicity of glycosyl fluorophthalate anion **B** (R = F) would become weaker than that of glycosyl phthalate anion **B** (R = H) such that the oxocarbenium ion **D** would preferentially react with the glycosyl acceptor (sugar-OH) over the less nucleophilic glycosyl fluorophthalate anion **B** (R = F). Herein, a one-pot direct glycosylation method with anomeric hydroxy sugars as glycosyl donors employing 3-fluorophthalic anhydride (**2**) and triflic anhydride as activating agents is reported.

Glycosylations of acceptors **3–7** (Fig. 1) with benzyl-protected glucosyl donor **10** and mannosyl donor **11** were carried out by

Table 1

Glycosylations with benzyl-protected donors 10 and 11

the following sequence: (i) a solution of **10** or **11** (1.0 equiv), 3-fluorophthalic anhydride (**2**, 1.2 equiv), and 1,8-diazobicyclo[5,4,0] undec-7-ene (DBU, 1.2 equiv) in the presence of 4 Å molecular sieves was stirred for 15 min at room temperature in CH_2Cl_2 (2.0 mL/50 mg of the donor), (ii) the glycosyl acceptor (1.2 equiv) in CH_3CN (3.5 mL/50 mg of the donor) was added to the above solution at 0 °C and stirred for 15 min, and (iii) Tf₂O (1.5 equiv) in CH_2Cl_2 (1.5 mL/50 mg of the donor) was slowly added to the above solution at 0 °C, stirred for 15 min at 0 °C, and then subsequently warmed to room temperature for 30 min.

Indeed, glucosylations of primary alcohol acceptors **3** and **4** with the glucosyl donor **10** employing 3-fluorophthalic anhydride (**2**) provided desired disaccharides **12** and **13**, respectively, in high yields without generation of the undesired self-condensed esters, which were formed at approximately 10% in our original glucosylations of **3** and **4** with **10** employing phthalic anhydride (entries 1 and 2 in Table 1). Glucosylations of secondary alcohol acceptors **5** and **6** with **10** gave not only desired disaccharides **14** and **15**, respectively, but also a small amount of undesired self-condensed esters (entries 3 and 4). Nevertheless, the amounts (8% and 3%) of the self-condensed esters generated in the present glucosylations

$\begin{array}{c} BnO \\ BnO \\ R^{1} \circ OH \\ 10 \ R^{1} = OBn, \ R^{2} = H \\ 11 \ R^{1} = H, \ R^{2} = OBn \end{array} \xrightarrow[]{\text{INS 4A, rt, 15 min}} BnO \\ \hline \begin{array}{c} Mis 4A, rt, 15 min \\ 2. \ ROH, \ 0 \ ^{\circ}C, 15 min \\ 3. \ Tf_{2}O \ (1.5 \ eq) \\ 0 \ ^{\circ}C \ to \ rt, \ 45 \ min \\ 16-18 \ R^{1} = H, \ R^{2} = OBn \end{array} \xrightarrow[]{\text{OB}} \begin{array}{c} R^{1} \circ OR \\ R^{1} \circ OR \\ R^{1} \circ OR \\ R^{1} \circ OR \\ R^{2} = H \\ 16-18 \ R^{1} = H, \ R^{2} = OBn \end{array}$	
EntryDonorAcceptor (ROH)ProductYield% ^a (ratio, α/β) ^b Self-conder	nsed ester, %
1 $BnO_{BnO_{O}} OH BrO_{BrO_{O}} OH BzO_{OMe} DH BzO_{OMe} 12 $ $B4 (1:1.4) 0 $ $BnO_{BrO_{O}} OH BzO_{OMe} 73 (1.6:1) 10^{c}$	
2 10 HO $BnO OMe$ 13 BO OMe $BnO OMe$	
3 10	
4 10 BnO Me 15 $84(1:1.8)$ $3 \\ 82(1:7.5)$ 10^{c}	
5 BnO OBn BnO OB BN	
6 11 5 17 85 (α only) 0 BnO OBn	
7 11 18 86 (1.8:1) 0	

^a Determined after isolation.

^b The ratio was determined by ¹H NMR.

^c The result from the original method employing phthalic anhydride, see Ref. 17.

Table 2

Glycosylations with benzoyl-protected donors 19 and 20

		1. 2 (1.2 eq), DBU (1.2 eq)	2	
	BzO F	$MS 4A, CH_2CI_2$	BzO R ²	
	BZO	rt, 15 min	BZO	
	620	R ^{1[°]OH 2. ROH, 0 °C, 15 min}	R ¹ OR	
	19 R ¹ = OBz.	$R^2 = H$ 3. $Tf_2O(1.5 eq)$ 2	1-24 $B^1 = OBz B^2 = H$	
	20 R ¹ = H, R ²	$^2 = OBz$ 0 °C to rt, 45 min 2	5-27 R ¹ = H, R ² = OBz	
Entry	Donor	Acceptor (ROH)	Product	Yield% ^a (ratio, α/β) ^b
	BzO			
	BZO			
1	BZOOOH	3	21	85 (β only)
	19			
2	19	5	22	84 (β only)
3	19	6	23	82 (β only)
		HO _ OBz		
		BZO		
4	19	BzO	24	84 (β only)
		ÓMe		
		8		
	BnO			
5	BnO	3	25	86 (α only)
	юн			
C	20	6	26	94 (α oply)
о 7	20	0 7	26 27	$84 (\alpha \text{ only})$ 85 ($\alpha \text{ only}$)
,	20		21	

benzoyl glucose 19 exclusively afforded corresponding β-disaccha-

rides 21-24, respectively, in high yields (entries 1-4 in Table 2)

while mannosylations of acceptors **3**, **6**, and **7** with tetrabenzoyl

mannose **20** were completely α -selective, providing α -disaccha-

rides 25-27, respectively, in high yields (entries 5-7). The result

indicates that the neighboring group participation by the benzoate

at the C-2 position was fully operative in the present one-pot

mation of 1,2-cis- β -mannopyranosyl linkages by employing 2,3-

di-O-benzyl-4,6-O-benzylidene-D-mannopyranose (28) as the

We then, applied the present method to the stereospecific for-

^a Determined after isolation.

^b The ratio was determined by ¹H NMR.

were less than those in our original glucosylations with 10 employing phthalic anhydride. On the other hand, mannosylations of acceptors 3, 5, and 7 with donor 11 were more satisfactory than the glucosylations, providing mannosyl disaccharides 16, 17, and 18, respectively, in high yields without the formation of selfcondensed esters (entries 5-7).¹⁹

Glycosylations of various acceptors with benzoyl-protected glucosyl donor **19** and mannosyl donor **20** were also examined under the same reaction conditions as described above, with the exception of using CH₂Cl₂ as the solvent (Table 2). Glucosylations of all primary and secondary alcohol acceptors 3, 5, 6, and 8 with tetra-

glycosylation.

^a Determined after isolation.

^b The ratio was determined by LC-Mass.

Table 4

Glucosylations with benzylidene-protected donor **36**

	Ph O O BnO BnO BnO 36	1. 2 (1.1 eq), DBU (1.2 eq) MS 4A, CH ₂ Cl ₂ , rt, 15 mir 2. DTBMP (3.3 eq) TfOH (1.1 eq), -78 °C, 15 3. Tf ₂ O (1.5 eq), -78 °C, 15 4. ROH, -78 to 0 °C, 1 h	min 37-41	
Entry	Acceptor (ROH)	Product	Yield% ^a (ratio, α/β) ^b	Self-condensed ester, %
1	3	37	88 (1:1.4) ^b	0
			74 (α only)	20 ^d
2	8	38	87 (30:1) ^c	4
			87 (18:1)	5 ^a
3	6	39	85 (1:17) ^b	0
4	5	40	85 (2:1) ^c	0
5	9	41	87 (1:1.5) ^b	0

^a Determined after isolation.

^b The ratio was determined by ¹H NMR.

^c The ratio was determined by LC-Mass.

^d The result from the original method employing phthalic anhydride, see Ref. 17.

mannosyl donor, since the directing effect of the 4,6-O-acetal of the mannosyl donor on the mannopyranosylation is well established.^{11a,12a,17,20} Mannosylations with the donor **28** were conducted under a slightly modified condition: 2,6-di-t-butyl-4methylpyridine (DTBMP) was added to prevent cleavage of the acid-labile benzylidene group by triflic acid, and triflic anhydride was added before the acceptor in order to enhance the β-selectivity²¹ (see Supplementary data for General Procedure). Mannosylations of all primary and secondary alcohol acceptors **3–9** with the 4,6-O-benzylidene-protected mannose 28 using 3-fluorophthalic anhydride and Tf₂O as activators were highly β -selective, providing β-mannopyranosides **29–35**, exclusively or predominantly in high yields without generation of the self-condensed esters (entries 1-7 in Table 3). Unlike glycosylations with donors 10 and 11, the 4,6-0benzylidene-protected mannosyl donor 28 did not generate the self-condensed ester even when Tf₂O was added prior to the acceptor.

We also applied the present modified one-pot glycosylation method to the glucosylation with 2,3-di-O-benzyl-4,6-O-benzylidene-D-glucopyranose (36). To compare these results with those from the original glucosylation employing phthalic anhydride, the glucosylation with **36** employing 3-fluorophthalic anhydride was conducted under the same condition as that of the original, under which triflic acid (TfOH) was added just before addition of Tf₂O.¹⁷ The glucosylation of the benzoyl-protected primary alcohol glucose acceptor 3 with the benzylidene-protected glucosyl donor 36 employing 3-fluorophthalic anhydride provided desired disaccharides 37 without generation of the self-condensed ester, while the original glucosylation of 3 with 36 employing phthalic anhydride gave 20% of the self-condensed ester (entry 1 in Table 4). Although the glucosylation of 8 with 36 generated a small amount (4%) of the self-condensed ester (entry 2), glucosylations of other acceptors 6, 5 and 9 with 36 did not produce self-condensed esters and provided desired disaccharides 39, 40, and 41, respectively, in high yields (entries 3-5 in Table 4).

We performed an NMR study to detect intermediates in the glycosylation with 4,6-O-benzylidene mannose **28** as the model donor. Intermediates in the reaction of 3-fluorophthalic anhydride (**2**) and **28** in the first step of the mannosylation would be mannosyl 3'-fluorophthalates **42** α and **42** β and mannosyl 6'-fluorophthalates **43** α and **43** β (Fig. 2). When a mixture of **28** (α/β = 2.1:1) (1.0 equiv) and **2** (1.2 equiv) in CD₂Cl₂ at 25 °C in the NMR tube was treated with DBU (1.2 equiv), the ¹H NMR spectrum showed anomeric proton resonances at δ 6.31 and 6.34 for α -mannosyl fluorophthalates

42 α and **43** α and at δ 5.90 and 6.00 for β-mannosyl fluorophthalates **42**^B and **43**^B. Almost the same amount of regioisomers **42** and **43** were formed while the anomeric ratio, $(42\alpha + 43\alpha)/(12\alpha + 43\alpha)/(12\alpha$ $(42\beta + 43\beta)$, was around 1.6:1. This ratio was unchanged at 25 °C; however, during the temperature change from 25 to 35 °C, $^1\mathrm{H}$ NMR indicated that β-anomers slowly converted to the corresponding stable α -anomers (see Supplementary data). After 30 min at 35 °C, almost all β -anomers were converted into α -anomers, showing only two anomeric proton signals at δ 6.31 and 6.34. The reaction mixture in the NMR tube was then cooled down to -40 °C, and DTBMP (3.0 equiv) and Tf₂O (1.5 equiv) were added sequentially. Immediately after addition of Tf₂O, the ¹H NMR spectrum showed an anomeric proton peak at δ 6.03 for α -mannopyranosyl triflate **44**, the same species as that was produced in the original mannosylation.¹⁷ The ¹³C NMR spectrum at -40 °C also indicated the formation of **44** with an anomeric carbon peak at 105.4. The NMR study supported both the mechanism depicted in Scheme 1 and the involvement of the α -mannopyranosyl triflate **44** in the β -mannosylation with 4,6-0-benzylidene mannose 28 (see Supplementary data).

In conclusion, we described here an efficient direct glycosylation method with anomeric hydroxy sugars as glycosyl donors employing 3-fluorophthalic anhydride and Tf₂O as activating agents. Few or no undesired self-condensed esters were formed in the present glycosylation employing 3-fluorophthalic anhydride, as compared with our original glycosylation employing phthalic anhydride. Glycosyl 3'-fluorophthalates and glycosyl 6'-fluorophthalates were identified as intermediates in the first step of the present glycosylation reaction, while α -mannosyl triflate was detected in the second step of the mannosylation with 4,6-O-benzylidene mannose, based on the NMR study.

Figure 2. Intermediates identified in the mannosylation with

Acknowledgments

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) through the Center for Bioactive Molecular Hybrids (No. R11-2003-019-00000-0).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.09.064.

References and notes

- (a) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503–1531; (b)Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W., Sinaÿ, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp 5–237.
- (a) Varki, A. *Glycobiology* **1993**, 3, 97–130; (b) Dwek, R. A. *Chem. Rev.* **1996**, 96, 683–720; (c) Bertozzi, C. R.; Kiessling, L. L. *Science* **2001**, 291, 2357–2364.
- (a) Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-123;
 (b) Schmidt, R. R. In Modern Methods in Carbohydrate Synthesis; Khan, S. H., O'Neil, R. A., Eds.; Harwood Academic: Amsterdam, 1996; pp 20-54.
- 4. Garegg, P. J. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179-205.
- Kahne, D.; Walker, S.; Cheng, Y.; Engen, D. V. J. Am. Chem. Soc. 1989, 111, 6881– 6882.
- Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380– 1419.
- Fraser-Reid, B.; Madsen, R. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York, 1997; pp 339–356.
- 8. Shimizu, M.; Togo, H.; Yokoyama, M. Synthesis 1998, 799-822.
- 9. Plante, O. J.; Andrade, R. B.; Seeberger, P. H. Org. Lett. 1999, 1, 211-214.
- Zhang, Z. Y; Wong, C.-H.. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G. W., Sinaÿ, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp 117-134.

- (a) Kim, K. S.; Kim, J. H.; Lee, Y. J.; Lee, Y. J.; Park, J. J. Am. Chem. Soc. 2001, 123, 8477–8481; (b) Kim, K. S.; Kang, S. S.; Seo, Y. S.; Kim, H. J.; Lee, Y. J.; Jeong, K.-S. Synlett 2003, 1311–1314.
- (a) Baek, J. Y.; Choi, T. J.; Jeon, H. B.; Kim, K. S. Angew. Chem., Int. Ed. 2006, 45, 7436–7440; (b) Choi, T. J.; Baek, J. Y.; Jeon, H. B.; Kim, K. S. Tetrahedron Lett. 2006, 47, 9191–9194.
- (a) Kim, K. S.; Lee, Y. J.; Kim, H. Y.; Kang, S. S.; Kwon, S. Y. Org. Biomol. Chem. 2004, 2, 2408–2410; (b) Kwon, S. Y.; Lee, B.-Y.; Jeon, H. B.; Kim, K. S. Bull. Korean Chem. Soc. 2005, 26, 815–818.
- For a review for glycosylations with C-1 hydroxy sugars, see: (a) Gin, D. Y. J. Carbohydr. Chem. 2002, 21, 645–665; (b) Ryan, D. A.; Gin, D. Y. In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp 95–143.
- (a) Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem. Soc. **1997**, 119, 7597–7598;
 (b) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. **2000**, 122, 4269–4279;
 (c) Nguyen, H. M.; Chen, Y.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. **2001**, 123, 8766–8772;
 (d) Boebel, T. A.; Gin, D. Y. Angew. Chem., Int. Ed. **2003**, 42, 5874–5877.
- (a) Wang, P.; Kim, Y.-J.; Navarro-villalobos, M.; Rohde, B. D.; Gin, D. Y. J. Am. Chem. Soc. 2005, 127, 3256–3257; (b) Bodine, K. D.; Gin, D. Y.; Din, M. S. Org. Lett. 2005, 7, 4479–4482; (c) Kim, Y.-J.; Wang, P.; Navarro-villalobos, M.; Rohde, B. D.; Derryberry, J.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128, 11906–11915.
- Kim, K. S.; Fulse, D. B.; Baek, J. Y.; Lee, B.-Y.; Jeon, H. B. J. Am. Chem. Soc. 2008, 130, 8537–8547.
- 18. Park, S. M.; Suk, D.-H.; Kim, K. S. J. Carbohydr. Chem. 2009, 28, 317–329.
- 19. All acceptors, donors, and product disaccharides are same as those in our original work. See: Ref. 17.
- (a) Baek, J. Y.; Lee, B.-Y.; Jo, M. G.; Kim, K. S. J. Am. Chem. Soc. 2009, 131, 17705–17713; (b) Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 4506–4507; (c) Crich, D.; Sun, S. J. Org. Chem. 1997, 62, 1198–1199; (d) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435–436; (e) Crich, D.; Sun, S. Tetrahedron 1998, 54, 8321–8348; (f) Weingart, R.; Schmidt, R. R. Tetrahedron Lett. 2000, 41, 8753–8758; (g) Tanaka, S.-i.; Takashina, M.; Tokimoto, H.; Fujimoto, Y.; Tanaka, K.; Fukase, K. Synlett 2005, 2325–2328; (h) Codée, J. D. C.; Hossain, L. H.; Seeberger, P. H. Org. Lett. 2005, 7, 3251–3254.
- 21. We have previously observed that the order of addition of reagents affected the stereoselectivity of the mannosylation: the β -selectivity increased when Tf₂O was added prior to the acceptor in mannosylations with 2'-carboxybenzyl 4,6-O-benzylidene mannosides as donors. See: Ref. 11a.